Highly Ordered Mesoporous α -Mn₂O₃ for Catalytic Decomposition of H₂O₂ at Low Temperatures

Jung-Nam Park,¹ Jeong Kuk Shon,¹ Mingshi Jin,¹ Seong Hee Hwang,¹

Gwi Ok Park,² Jin-Hyo Boo,¹ Tae Hee Han,³ and Ji Man Kim^{*1,2}

¹Department of Chemistry, BK21 School of Chemical Materials Science, Sungkyunkwan University,

Suwon 440-746, Korea

²Department of Energy Science and SKKU Advanced Institute of Nanotechnology,

Sungkyunkwan University, Suwon 440-746, Korea

³Department of Semiconductor Systems Engineering, School of Information and Communication Engineering,

Sungkyunkwan University, Suwon 440-746, Korea

(Received February 8, 2010; CL-100130; E-mail: jimankim@skku.edu)

Highly ordered mesoporous α -Mn₂O₃ with well-defined mesopores, high surface area, and high oxygen vacancy exhibits excellent catalytic activity toward H₂O₂ decomposition at low temperature.

Recently, there has been great interest in the synthesis and application of various kinds of nanostructured transition metal oxide as an attractive alternative to traditional catalysts.^{1,2} Among them, a nanocrystalline manganese oxide exhibits remarkable catalytic activities toward gas-phase oxidation of methane³⁻⁵ and carbon monoxide,^{6,7} and decomposition of NO_x.⁸ The manganese oxide also shows excellent catalytic activity for decomposition of H₂O₂ compared to other transition metal oxides.⁹ The decomposition of H₂O₂ in various applications, such as water treatment and bleaching using H₂O₂ in production of pulp, is desirable from an environmental viewpoint. Many researchers have also reported that various mixed metal oxides, including Mn species such as Mn_{0.53}Fe_{2.47}O₄,¹⁰ CrO_3 - MnO_2 ,¹¹ Li_2O - Mn_2O_3 / Al_2O_3 ,¹² $La_{1-x}Sr_xMnO_3$ ¹³ and $MnFe_2O_4$,¹⁴ are active for H_2O_2 decomposition. Recently, Valdés-Solís et al. have reported that spinel ferrite MnFe₂O₄ nanoparticles shows much higher activity than heterogeneous catalysts previously reported in the literature.¹⁴

Mesoporous transition metal oxides have received enormous attention because of the unique catalytic properties attributed to high surface area and easy accessibility to active sites.^{15,16} Ren et al. reported that the mesoporous metal oxides exhibit higher activity than corresponding bulk materials for low-temperature CO oxidation.¹⁶ The high activity is related to the mesoporous structures, not just high surface area of mesoporous metal oxides. A nanoreplication method has brought forward incredible possibilities in preparing new mesoporous materials. However, the nanoreplication of mesoporous metal oxides presents some difficulty. In particular, it is necessary to carry out infiltration several times to achieve optimum loading of precursors within the mesopores.^{17–19} In the present work, we have successfully synthesized highly ordered mesoporous α -Mn₂O₃ material by using a simple and facile solvent-free infiltration method.²⁰ The mesoporous α -Mn₂O₃ thus obtained was applied to catalytic H₂O₂ decomposition, where the catalytic performance was compared to those of bulk α -Mn₂O₃, mesoporous α -Fe₂O₃, and other reported nanocatalysts.

The mesoporous silica templates (KIT-6) were synthesized following methods reported elsewhere.^{21,22} A triblock copoly-

mer (Pluronic 123, $EO_{20}PO_{70}EO_{20}$, $M_{av} = 5800$) was used as the structure directing agent for the silica material. Tetraethylorthosilicate (Aldrich) was used as the silica source for the KIT-6 material. After calcination, the KIT-6 material was used as a template for the synthesis of α -Mn₂O₃ replica. Manganese(III) nitrate hexahydrate (Mn(NO₃)₂.6H₂O, Aldrich) was used as α -Mn₂O₃ precursor. Typically, 5.0 g of the calcined KIT-6 template was heated at 100 °C for 1 h. The preheated silica template was poured into a polypropylene bottle containing 3.2 g of Mn(NO₃)₂•6H₂O (mp 37 °C) that was melted to liquid phase at 80 °C. The bottle containing the mixture was closed and shaken vigorously to mix the Mn(NO₃)₂•6H₂O and KIT-6 template. Subsequently, the bottle was put in an oven at 80 °C overnight for the spontaneous infiltration of manganese precursor within the mesopores of silica template. The composite materials then were heated to 450 °C under ambient atmosphere for 3 h. The silica template was removed by treating the composite material with 2 M NaOH solution three times. Finally, the mesoporous α -Mn₂O₃ material thus obtained was washed with distilled water and acetone several times and dried at 80 °C. Elemental analysis indicated that the amount of residual silica template was lower than 0.5 wt %. In order to compare the catalytic activity of mesoporous α -Mn₂O₃ material with other catalysts, a bulk α - Mn_2O_3 and a mesoporous α -Fe₂O₃ were also synthesized following a procedure described in the references^{23,24} (See Supporting Information for details of preparation methods²⁵). The H₂O₂ decomposition reactions were performed in a flask batch reactor at desired temperatures (1, 8, 18, and 25 °C) under atmospheric pressure. For typical reaction condition, the catalyst (0.05 g) was put into 31.5 mL of 0.042 M $\rm H_2O_2$ solution. The effect of pH of the medium on the H₂O₂ decomposition was investigated using KOH solution instead of water. The H₂O₂ concentration depending on reaction time was measured by KMnO₄ titration.²⁶

Figures 1a and 1b show X-ray diffraction (XRD) patterns for the KIT-6 template and the replicated mesoporous manganese oxide, respectively. As shown in the low-angle XRD pattern (Figure 1a), the KIT-6 exhibits typical XRD peaks that are characteristics of 3-D cubic (*Ia3d*) mesostructure.²⁷ In the case of mesoporous manganese oxide, a new XRD peak appears at a low angle as shown in Figure 1b, which corresponds to the position of the 110 reflection for *Ia3d* symmetry. Since the *Ia3d* symmetry are not allowed to have the 110 reflection, however, the presence of the new XRD peak indicates that the cubic *Ia3d* mesostructure is transformed to the tetragonal $I4_1/a$ (or lower)

Figure 1. XRD patterns of (a) KIT-6 template and (b) mesoporous α -Mn₂O₃, and (c, d) TEM images of mesoporous α -Mn₂O₃. Insets in XRD pattern and TEM image are wide angle XRD pattern and high-resolution TEM images of mesoporous α -Mn₂O₃, respectively.

mesostructures or a single gyroid structure after the removal of silica template.^{20,21,24,28,29} Very similar phase transformation upon the removal of silica template was reported for the synthesis of mesoporous carbon, metal oxides, and metals from mesoporous silica templates with cubic Ia3d mesostructures (MCM-48 or KIT-6).^{20,21,24,28} The wide-angle XRD pattern of mesoporous manganese oxide (inset of Figure 1b) shows several peaks at 2θ ; (211) at 23.08°, (222) at 32.87°, (400) at 38.14°, (332) at 45.00°, and (134) at 49.22°, which are the characteristics of α -Mn₂O₃. The average size of crystalline α -Mn₂O₃ framework is estimated to be about 10 nm by using the Scherrer formula, which is similar to the pore size of KIT-6 (ca. 7.4 nm, Figure S2 and Table S1) as well as the wall thickness estimated by TEM image (ca. 8nm, Figure 1d). The highly ordered mesostructures of mesoporous α -Mn₂O₃ can also be confirmed by TEM images as shown in Figures 1c and 1d. A highresolution TEM image (inset of Figure 1d) shows clear lattice fringes with the spacing of about 0.27 nm, which agrees well with the d_{222} spacing of α -Mn₂O₃. SEM images in Figure S1²⁵ are also consistent with the presence of highly ordered porous structures on the particle surface.

The N₂ adsorption–desorption isotherm for the mesoporous α -Mn₂O₃ gives a typical type-IV isotherm with hysteresis, which is characteristic of mesoporous materials (Figure S2²⁵). A well-defined step appears in the adsorption–desorption curves around a relative pressure, p/p_0 , of 0.8. As shown in Figure S2,²⁵ the mesoporous α -Mn₂O₃ exhibits dual porous structure (2.7 and 20 nm). The mesopore with 2.7 nm in diameter should arise from the silica framework of KIT-6 template (silica wall thickness is about 2.6 nm, Table S1²⁵). The other (20 nm pore) may be generated by the structural transformation from the cubic *Ia*3*d* mesostructure to the others, as discussed for XRD patterns.^{20,21,24,29} The mesoporous α -Fe₂O₃ and bulk α -Mn₂O₃ materials were also characterized by N₂ sorption, XRD, and SEM (Figures S2, S3, and S4).²⁵ The physical properties of mesoporous α -Fe₂O₃, bulk α -Mn₂O₃, and mesoporous α -Fe₂O₃

Table 1. Physical properties and light-off time for $\mathrm{H_2O_2}$ decomposition

Sample	$S_{\rm BET}^{a}$	V _{tot} ^b	Light-off time/min	
	$/m^2 g^{-1}$	$/{\rm cm}^3{\rm g}^{-1}$	$t_{50}{}^{c}$	t_{100}^{d}
KIT-6	709	0.99	_	_
Mesoporous α -Mn ₂ O ₃	118	0.41	0.3	0.7
Bulk α -Mn ₂ O ₃	21	0.16	1.0	10
Mesoporous α -Fe ₂ O ₃	138	0.36	365	1380

^aBET surface area calculated in the range of relative pressure $(p/p_0) = 0.05-0.20$. ^bTotal pore volume measured at $p/p_0 = 0.99$. ^cTimes when H₂O₂ conversion reaches 50% at 25 °C. ^dTimes for 100% conversion of H₂O₂ at 25 °C.

Figure 2. H_2O_2 decomposition activity over mesoporous and bulk α -Mn₂O₃ catalysts at different reaction temperatures (1, 8, 18, and 25 °C).

material are summarized in Table 1. The BET surface area of mesoporous α -Mn₂O₃ (118 m² g⁻¹) shows a much higher value compared to bulk α -Mn₂O₃ (21 m² g⁻¹). The mesoporous α -Fe₂O₃ also exhibits well-defined mesostructure and high surface area (138 m² g⁻¹).

Figure 2 shows catalytic activity toward H₂O₂ decomposition over mesoporous and bulk α -Mn₂O₃ at different temperatures (1, 8, 18, and 25 °C), which depicts the conversion of H_2O_2 . Total H_2O_2 decomposition (t_{100}) is achieved within 1 min over mesoporous α -Mn₂O₃ even at 1 °C whereas t_{100} over bulk α -Mn₂O₃ is achieved at 30 and 10 min at 1 and 25 °C, respectively. In general, H₂O₂ decomposition rate over metal oxides is known to be dependent on reaction temperature, i.e., the activity increases as the reaction temperature increases.^{11,30} However, it was observed that the catalytic decomposition of H_2O_2 over the mesoporous α -Mn₂O₃ is very similar at all temperatures without any detectable difference, even at 1 °C under our reaction conditions, whereas the bulk α -Mn₂O₃ shows that the activity is highly dependent on the reaction temperatures. It is reasonable that the high activity toward H_2O_2 decomposition over mesoporous α -Mn₂O₃ at low temperature is attributed to its well-defined mesopores and high surface area.

The mechanism of H_2O_2 decomposition over transition metal oxide has been proposed by two possible reaction pathways via a surface oxygen vacancy mechanism and via radical reaction mechanism in the literature (See Supporting Information).^{10,13,25,31} The oxygen vacancies on the metal oxide surface can participate in the reaction by activating H_2O_2 to produce H_2O and O_2 .^{10,13} A reaction mechanism by radical formation (\bullet OOH and \bullet OH) on the surface metal oxide species (for example, $Fe_{surf.}^{2+}$ and $Fe_{surf.}^{3+}$) has also been proposed.^{10,31} Figure S5²⁵ shows H₂ temperature-programmed reduction (H₂-TPR) and O₂ temperature-programmed oxidation (O₂-TPO) data for mesoporous α -Mn₂O₃ and bulk α -Mn₂O₃ materials. As shown in Figure S5,²⁵ the bulk α -Mn₂O₃ exhibits two typical H₂-TPR peaks (around 360 and 470 °C),³² whereas the mesoporous α -Mn₂O₃ exhibits broad reduction peaks below 300 °C (150 and 250 °C) in addition to the two main peaks. These additional peaks at low temperatures are probably due to the reduction of manganese species with oxygen vacancies, indicating that the mesoporous α -Mn₂O₃ has a greater number of oxygen vacant sites on the surface than bulk α -Mn₂O₃. The O₂-TPO data (Figure $S5^{25}$) also indicate that a much larger amount of oxygen is consumed for the mesoporous α -Mn₂O₃ than bulk α -Mn₂O₃. It is reasonable that mesoporous α -Mn₂O₃ with high surface area and considerable amount of oxygen vacant sites on the surface may result in excellent catalytic activity at low temperature, where the α -Mn₂O₃ catalyst follows a surface oxygen vacancy mechanism.¹³

The activity of mesoporous α -Mn₂O₃ is compared to those of mesoporous α -Fe₂O₃ and other catalysts in the literature (Figure S6²⁵) under the same reaction conditions. For comparison, the activities of MnFe₂O₄,¹⁴ Cu_xFe_{3-x}O₄,³³ and Mn_{0.53}Fe_{2.47}O₄¹⁰ catalysts reported by other authors are plotted in Figure S6.²⁵ Mesoporous α -Mn₂O₃ synthesized exhibits the excellent activity at low temperature compared to mesoporous α -Fe₂O₃ and other catalysts in the literature. t_{100} of mesoporous α -Fe₂O₃ is achieved in 23 h whereas the that of nanosized $MnFe_2O_4$ (BET surface area: $93 \text{ m}^2 \text{ g}^{-1}$)¹⁴ is achieved in around 5 min. $Mn_{0.53}Fe_{2.47}O_4$ (BET surface area: $14-16 \text{ m}^2 \text{ g}^{-1}$)¹⁰ and $Cu_xFe_{3-x}O_4^{33}$ exhibit relatively low activity. As shown in Figure S7,²⁵ the activity of mesoporous α -Mn₂O₃ is not affected by pH of the reaction medium. Moreover, there is no significant change in the H₂O₂ decomposition even though the catalyst is reused several times (Figure S825). After three reaction and regeneration cycles, the XRD patterns and H2-TPR of mesoporous α -Mn₂O₃ are very similar to those of the material before the reaction (Figure S9²⁵), indicating the present mesoporous α -Mn₂O₃ is quite stable over several catalysis cycles.

In summary, the H_2O_2 decomposition activity over mesoporous α -Mn₂O₃ is considerably higher than those of bulk α -Mn₂O₃, mesoporous α -Fe₂O₃, and other nanocatalysts reported in the literature. The excellent activity of mesoporous α -Mn₂O₃ even at 1 °C is probably due to the high surface area as well as the large number of oxygen vacant sites. Moreover, the activity is not affected by reaction conditions such as reaction temperature, pH, and reutilization. From an environmental viewpoint, the present work is expected to be very useful for H_2O_2 removal applications such as water treatment or peroxide bleaching.

This work was supported by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10029-0). We also thank to the Priority Research Centers Program (project No. 20090094025) and the Basic Science Research Program (2009-0076903).

References and Notes

- 1 N. R. Shiju, V. V. Guliants, Appl. Catal., A 2009, 356, 1.
- 2 M. A. Carreon, V. V. Guliants, *Eur. J. Inorg. Chem.* **2005**, 27. 3 Y-F Han L. Chen K. Ramesh F. Widiaia S. Chilukoti I.
- 3 Y.-F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I. Kesumawinata Surjami, J. Chen, J. Catal. 2008, 253, 261.
- 4 Z.-C. Jiang, H. Gong, S.-B. Li, Stud. Surf. Sci. Catal. 1997, 112, 481.
- 5 K. Ramesh, L. Chen, F. Chen, Z. Zhong, J. Chin, H. Mook, Y.-F. Han, *Catal. Commun.* 2007, *8*, 1421.
- 6 K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, Y.-F. Han, *Catal. Today* 2008, 131, 477.
- 7 Y.-F. Han, F. Chen, Z.-Y. Zhong, K. Ramesh, E. Widjaja, L.-W. Chen, *Catal. Commun.* **2006**, *7*, 739.
- 8 M. Misono, Y. Hirao, C. Yokoyama, *Catal. Today* **1997**, *38*, 157.
- 9 J. T. Kohler, R. E. Altomare, J. R. Kittrell, *Ind. Eng. Chem. Prod. Res. Dev.* **1975**, *14*, 36.
- 10 R. C. C. Costa, M. F. F. Lelis, L. C. A. Oliveira, J. D. Fabris, J. D. Ardisson, R. R. V. A. Rios, C. N. Silva, R. M. Lago, *J. Hazard. Mater.* **2006**, *129*, 171.
- 11 M. M. Selim, M. K. El-Aiashi, H. S. Mazhar, S. M. Kamal, *Mater. Lett.* **1996**, 28, 417.
- 12 N.-A. M. Deraz, H. H. Salim, A. Abd El-Aal, *Mater. Lett.* 2002, 53, 102.
- 13 Y. N. Lee, R. M. Lago, J. L. G. Fierro, J. González, *Appl. Catal.*, A 2001, 215, 245.
- 14 T. Valdés-Solís, P. Valle-Vigón, S. Álvarez, G. Marbán, A. B. Fuertes, *Catal. Commun.* 2007, 8, 2037.
- 15 F. Schüth, Chem. Mater. 2001, 13, 3184.
- 16 Y. Ren, Z. Ma, L. Qian, S. Dai, H. He, P. Bruce, *Catal. Lett.* 2009, 131, 146.
- 17 S. C. Laha, R. Ryoo, Chem. Commun. 2003, 2138.
- 18 E. Rossinyol, J. Arbiol, F. Peiró, A. Cornet, J. R. Morante, B. Tian, T. Bo, D. Zhao, *Sens. Actuators B* 2005, 109, 57.
- 19 W. Shen, X. Dong, Y. Zhu, H. Chen, J. Shi, *Microporous Mesoporous Mater.* 2005, 85, 157.
- 20 J. K. Shon, S. S. Kong, Y. S. Kim, J.-H. Lee, W. K. Park, S. C. Park, J. M. Kim, *Microporous Mesoporous Mater.* 2009, 120, 441.
- 21 J. K. Shon, S. S. Kong, J. M. Kim, C. H. Ko, M. Jin, Y. Y. Lee, S. H. Hwang, J. A. Yoon, J.-N. Kim, *Chem. Commun.* 2009, 650.
- 22 S. S. Kim, H. I. Lee, J. K. Shon, J. Y. Hur, M. S. Kang, S. S. Park, S. S. Kong, J. A. Yu, M. Seo, D. H. Li, S. S. Thakur, J. M. Kim, *Chem. Lett.* **2008**, *37*, 140.
- 23 S. Ordóñez, J. R. Paredes, F. V. Díez, *Appl. Catal., A* 2008, 341, 174.
- 24 J. K. Shon, S. S. Kong, S. S. Kim, M. S. Kang, J. M. Kim, B. G. So, *Funct. Mater. Lett.* 2008, *1*, 151.
- 25 Supporting Information is available electronically on the CSJ-Journal web site, http://www.csj.jp/journals/chem-lett/index. html.
- 26 M. K. Eberhardt, A. A. Román-Franco, M. R. Quiles, *Environ. Res.* **1985**, *37*, 287.
- 27 T.-W. Kim, F. Kleitz, B. Paul, R. Ryoo, J. Am. Chem. Soc. 2005, 127, 7601.
- 28 M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, S. H. Joo, R. Ryoo, J. Phys. Chem. B 2002, 106, 1256.
- 29 H. J. Shin, R. Ryoo, Z. Liu, O. Terasaki, J. Am. Chem. Soc. 2001, 123, 1246.
- 30 N.-A. M. Deraz, Mater. Lett. 2002, 57, 914.
- 31 W. P. Kwan, B. M. Voelker, *Environ. Sci. Technol.* 2003, 37, 1150.
- 32 E. R. Stobbe, B. A. de Boer, J. W. Geus, *Catal. Today* **1999**, *47*, 161.
- 33 A. I. Onuchukwu, Mater. Chem. Phys. 1990, 25, 331.